- WE HAVE HEARD FROM DR. SANDERS AND MR KRATZ—
 THEIR MESSAGE IS CLEAR—WE NEED TO FOCUS ON HOW
 WE SUPPORT, MAINTAIN AND UPGRADE OUR SYSTEMS
- THE UNDER SECRETARY OF DEFENSE FOR ACQUISITION REFORM HAS PROVIDED US WITH THE OPPORTUNITY—
 AND THE ENVIRONMENT TO MODERNIZE AND IMPROVE OUR BUSINESS AND TECHNICAL PRACTICES.
- A MAJOR DRIVER BEHIND ACQUISITION REFORM HAS
 BEEN THE BUDGET. IF WE ARE GOING TO MODERNIZE
 AND LIVE WITHIN THE BUDGET CONSTRAINTS WE NEED
 TO FIND PLACES WHERE WE CAN SAVE MONEY. MUCH OF
 OUR FOCUS HAS BEEN ON REFORMING THE ACQUISITION
 PHASES OF THE SYSTEM LIFE CYCLE—BUT IN TRUTH THE
 OPERATIONS AND SUPPORT OR O&S PHASE OF THE
 SYSTEMS LIFE CYCLE IS WHERE WE SPEND THE LION'S
 SHARE OF OUR SYSTEMS RELATED DEFENSE DOLLARS.
 THEREFORE, IT WOULD ONLY MAKE SENSE THAT THIS IS
 ANOTHER "TARGET OF OPPORTUNITY" THAT IS CRITICAL

TO REFORM, MODERNIZE AND IMPROVE OUR BUSINESS AND TECHNCIAL PRACTICES.

• SPECIFICALLY, LOOK AT THE HISTORY OF JUST A FEW OF OUR LEGACY SYSTEMS.

CHART

- THIS CHART HAS BEEN USED BY THE LOGISTICS

 COMMUNITY FOR SOME TIME TO MAKE THE POINT THAT

 O&S COSTS ARE HIGH PRINCIPALLY BECAUSE OF LOW

 SYSTEM RELIABILITY THAT HAS IN TURN RESULTED IN

 MORE SPARES BEING REQUIRED—AND THEREFORE

 COSTING US MORE MONEY
- WHILE THERE IS SOME TRUTH IN THIS, IT DOES NOT TELL
 THE WHOLE STORY—O&S COSTS AS WE ALL KNOW ARE
 MADE UP OF MANY ELEMENTS INCLUDING FUEL,
 MANPOWER, AMMUNITION, EXISTING SUPPORT
 INFRASTUCTURE ETC—NOT ALL OF THESE ARE DIRECTLY

TIED TO RELIABILITY EVEN THOUGH IT MAY PLAY A

PART IN SOME. OPERATIONAL TEMPO IS ALSO ANOTHER

MAJOR CONTRIBUTING FACTOR. IT STANDS TO GOOD

REASON THAT THE MORE WE USE A SYSTEM, THE HIGHER

THE O&S COSTS ARE GOING TO BE, ESPECIALLY IF THE

SYSTEM USES FUEL.

- BUT THAT IS NOT MY FOCUS. WHEN I LOOK AT THIS CHART, I SEE A BIG OPPORTUNITY.
- AS WE CAN SEE—THERE IS AMPLE OPPORTUNITY TO

 MAINTAIN AND MODIFY THESE SYSTEMS—ESPECIALLY

 WHEN YOU CONSIDER THE LONGER O&S TIMEFRAME

 COMPARED TO THE DEVELOPMENT TIMEFRAME.
- MOREOVER—WE ARE ACTIVELY TRYING TO SHORTEN
 THE ACQUISITION LIFE CYCLE..
- THE OPPORTUNITY OR CHALLENGE TO THE
 ENGINEERING COMMUNITY IS THIS—HOW DO WE

COLLECTIVELY DESIGN A SYSTEM TO BE EFFICIENTLY AND EFFECTIVELY MAINTAINED DURING OPERATION— BUT ALSO—HOW DO WE DESIGN A SYSTEM TO BE EFFICENTLY AND EFFECTIVELY UPGRADED WITH NEW TECHNOLOGY OR CAPABILITY—OR AGAINST A NEW THREAT OVER TIME?

- OUR EFFORTS UNDER ACQUISITION REFORM HAVE IMPROVED OUR PRACTICES TO DESIGN AND PRODUCE NEW SYSTEMS EFFICIENTLY AND EFFECTIVELY.
- WE HAVE INSTITUTONALIZED IPPD—WE HAVE FORMED IPTS TO BRING THE ACQUISITION LOGISTICIAN INTO THE DESIGN PROCESS—WE HAVE EXPLOITED OPEN SYSTEMS ARCHITECTURES AND REDUCED THE NUMBER OF MANDATORY MILITARY SPECIFICATIONS AND STANDARDS—WE HAVE UPDATED THE ACQUISITION WORKFORCE CURRICULUM AT THE DEFENSE ACQUISITION UNIVERSITY TO REFLECT THESE AND MANY OTHER CHANGES.

- I BELIEVE WE HAVE DONE A REASONABLE JOB TO

 ENSURE THAT ACQUISITION REFORM HAS BEEN PUSHED

 OUT INTO THE FIELD.
- THERE HAVE BEEN ROAD SHOWS, ACQUISITION REFORM STANDDOWN DAYS, WORKSHOPS, SATELLITE BROADCASTS, AND A HECK OF A LOT OF MEDIA EXPOSURE.
- BUT WITH ALL THIS ACTIVITY, HAS THE ENGINEERING
 COMMUNITY—THOSE OF US HERE TODAY—
 COLLABORATED ON HOW WE CAN COMPLEMENT EACH
 OTHERS' ACTIVITIES.
- SPECIFICALLY, HAVE THOSE OF US ON THE ACQUISITION
 SIDE OF THE HOUSE SHARED OUR LEESONS LEARNED
 WITH IPPD—THE USE OF IPTS—OUR EFFORTS TO ADOPT
 COTS AND OUR VIEWS ON THE ANTICIPATED PAYOFF OF
 AN OPEN SYSTEMS ARCHITECTURE?

- HAS THE SYSTEM OPERATING/SUSTAINING COMMUNITY
 SHARED THE LIMITATIONS OF APPLYING CAIV? THE
 NUANCE ASSOCIATED WITH USING COTS--- OR OPEN
 ARCHITECTURES? THE PRESSURE OF MAINTAININGG AN
 OPERATIONS TEMPO WHILE TRYING TO DO NORMAL
 MAINTENANCE OR A SYSTEM UPGRADE. TRYING TO
 REPLACE OR MAINTAIN PARTS, COMPONENTS OR SUBSYSTEMS WHERE THE OEM HAS GONE OUT OF BUSINESS
 OR JUST STOPPED MAKING THE PRODUCT.
- I BELIEVE WE HAVE A LOT TO SHARE WITH EACH
 OTHER—THAT IS THE ACQUISITION AND SUSTAINMENT
 ENGINEERING COMMUNITIES—THAT'S WHY WE ARE
 HERE TODAY.
- NOW DON'T GET ME WRONG—A LOT OF GOOD WORK AND
 COMMUNICATIONS HAS AND IS GOING ON. TAKE THE
 EXAMPLE OF THE NSSN

CHART

- THE QUESTION WE WANT TO ANSWER TODAY IS—HOW
 CAN WE DUPLICATE THIS KIND OF GOOD NEWS STORY
 WITH OTHER SYSTEMS?
- HOPEFULLY, WE WILL FIND OUT THIS WEEK.
- BEFORE I BRING ON THE PANEL, LET ME SHARE WITH
 YOU JUST HOW IMPORTANT WE ARE TO THE TECHNICAL
 COMMUNITY AT LARGE.
- DR. SANDERS AND I ARE OFTEN ASKED TO SPEAK AT

 VARIOUS WORKSHOPS, SYMPOSIA, ETC. IN THE AREAS OF

 QUALITY—TEST AND EVALUATION—MANUFACTURING—

 SOFTWARE—ACQUISITION LOGISTICS—OPEN SYSTEMS—

 RELIABILITY AND MAINTAINABILITY—MODELING AND

SIMULATION AND OF COURSE SYSTEM ENGINEERING IN GENERAL—JUST TO NAME A FEW.

- THE CONSISTENT THEME WITH ALL THESE FUNCTIONAL DISCIPLINES IS THIS—WE HAVE TO WORK WITH THE DESIGN ENGINEER, THE OPERATORS AND SUSTAINERS TO BE SURE WE ALL UNDERSTAND EACH OTHERS' NEEDS AND REQUIREMENTS.
- IT IS CLEAR—AS I LISTEN TO THE INDIVIDUAL

 FUNCTIONAL COMMUNITIES—THAT THIS COMMUNITY IS

 EXPECTED TO EFFECTIVELY AND EFFICIENTLY

 INTEGRATE THE MANY DISCIPLINES IT TAKES TO

 DESIGN—DEVELOP----PRODUCE—MAINTAIN AND

 UPGRADE THE DEPARTMENT'S SYSTEMS.
- THE CHALLENGE IS FOR US TO JUST DO IT.